Experimental investigation of shear-driven water film flows on horizontal metal plate
نویسندگان
چکیده
In this article, an experimental investigation has been conducted to characterize the instantaneous thickness of the surface water film driven by high-speed airflow pertinent to aerodynamic icing and anti-icing modeling. Non-intrusive results of the film flowing on a metal plate were obtained using the high-speed camera and confocal chromatic technique. The wind speed (Ua) ranges from 17.8 m/s to 52.2 m/s, and the film Reynolds number (Ref) ranges from 26 to 128. The effect of the high-speed airflow on the structure of the wave film was observed and analyzed qualitatively. A new correlation of the interfacial shear factor was proposed for the prediction of the average film thickness. The predictions were compared with the previous annular flow models by applying the dimensionless analysis method and a good agreement is achieved. The superficial roughness, characterized by root-mean-square of the thickness, was well-correlated using a piecewise linear function of the average film thickness. Furthermore, a comprehensive description of the superficial waves including spectrum analysis and division of film thickness data between underlying film and large waves was presented. Transformations of the wave frequency and amplitude with the wind speed and the film Reynolds number were also addressed.
منابع مشابه
An Analytical Approach to the Effect of Viscous Dissipation on Shear-Driven Flow between two parallel plates with Constant Heat Flux Boundary Conditions
An investigation has been made to analyze the effects of viscous dissipation on the heat transfer characteristics for both hydro-dynamically and thermally fully developed, laminar shear driven flow between two infinitely long parallel plates, where the upper plate is moving in an axial direction at a constant speed. On the basis of some routine assumptions made in the literature, a close form a...
متن کاملEffects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid
The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...
متن کاملCorner Crack Effect on the Seismic Behavior of Steel Plate Shear Wall System
Although, experimental studies have reported fracture at the corner of Steel Plate Shear Walls (SPSW), no study has been performed to investigate the crack effect, yet. Therefore, in this paper, the effect of crack at the corner of SPSWs on the seismic behavior of the system was investigated. Two probable cracks, that have been studies at the corner of SPSWs utilizing extended Finite Element me...
متن کاملExperimental Investigation on Cyclic Behavior of Butterfly-shaped Links Steel Plate Shear Walls
An innovative type called "butterfly-shaped links steel plate shear wall (BLSPSW)" was proposed as a lateral load resisting system. In this novel system, by creating butterfly-shaped links in the four sides of the web plate, the lateral load resisting mechanism is not the development of a diagonal tension field on the web plate (similar to Conventional SPSWs), but the capacity of the system is ...
متن کاملInvestigation the Effect of Strengthening Various Subpanels in the SPSPs with Two Rectangular Openings
In the present research, behavior of SPSPs with two rectangular openings and effect of strengthening different subpanels with various stiffener arrangements is investigated. In the next step, to investigate the effect of changing opening width on the trend of degradation shear stiffness and strength of the panel, the opening width is changed. In the third step, to study the effect of changing o...
متن کامل